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ABSTRACT

We consider the setting of multiple collaborative agents try-
ing to complete a set of tasks as assigned by a centralized
controller. We propose a scalable method called“Assignment-
based decomposition” which is based on decomposing the
problem of action selection into an upper assignment level
and a lower task execution level. The assignment problem is
solved by search, while the task execution is solved through
coordinated reinforcement learning. We show that this de-
composition of the overall problem into two levels scales well
and outperforms the state-of-the-art approaches including
pure assignment-level search or pure coordinated reinforce-
ment learning. We also show how this approach enables
transfer learning from domains with few agents to domains
with many agents.
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I.2.11 [Distributed Artificial Intelligence]: Multiagent
systems

General Terms

Algorithms, Experimentation

Keywords

reinforcement learning, markov decision processes, assign-
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1. INTRODUCTION
Markov Decision Processes (MDPs) have proved to be

useful and general models of optimal decision-making in
stochastic environments. In this paper, we consider the
setting of collaborative multiagent MDPs, which consist of
multiple agents trying to optimize an objective. Multiagent
formulations of MDPs are attractive because they naturally
model distributed agents that make decisions based on lim-
ited information about other agents. In general, this class of
problems is called a decentralized MDP (DEC-MDP), which
is known to be NEXP-complete [3]. Even the best of DEC-
MDP approaches have only been able to solve problems of
about 100 states assuming some special structure [1]. On the
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other hand solving the multiagent system as a joint MDP
over the joint state and action space is also computationally
prohibitive and does not scale to a large number of agents.

We consider an assignment-based decomposition approach
that is intermediate between the joint MDP approach and
the independent agent approach. We assume a centralized
controller that has relevant information about the states of
all agents to assign tasks, and allocates tasks and resources
to agents based on task-level value functions of agents. Once
the tasks are assigned to agents, the lower-level actions of
agents are decided by the task-level value functions until
the tasks are reassigned by the central controller. We call
such domains with multiple tasks and multiple agents Mul-
tiagent Assignment MDPs (MAMDPs). There exist many
real world examples of MAMDP domains, such as fire and
emergency response, vehicle routing and product delivery,
and games such as real-time strategy games.

There have been attempts to decompose multi-agent MDPs
in the literature. Meuleau et al. consider the notion of
weakly coupled MDPs, where the overall MDP is divided
into Markov task sets that do not share state space and can
be solved completely independently after the tasks are al-
located [10]. Dolgov et al. formulate a constrained MDP
problem where the agents are independent except for con-
straints on the amounts of global resources they all share
[2]. They solve this problem using a mixed integer linear
program approach. Another approach is hierarchical mul-
tiagent reinforcement learning, where a value function that
depends on the states and actions of all agents is learned at
the top assignment level and a task-specific value function
is learned at the lower level [9]. Our approach is similar, ex-
cept that we use search at the higher level to allocate tasks.
Our approach is much more space-efficient than a hierar-
chical approach, which requires a value function that takes
space exponential in the number of agents at the root level.

As indicated by some of the above work, agents are not
completely independent even after they are allocated tasks
due to shared common resources. Coordination graphs, which
are a form of conditional Markov random fields, have been
used to model interactions between agents [5, 16]. Graph
nodes represent agents and arcs between agent pairs repre-
sents potential interactions between their actions in influenc-
ing the reward or the outcome of the action. The long-term
value of a joint action over all agents is approximated as a
sum of a set of interaction terms, where each such term is
based on the actions of a pair of agents and the global state.
Bayesian network inference algorithms such as variable elim-
ination and belief propagation have been adapted to finding
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Figure 1: A possible coordination graph for a 4-
agent domain. Q-values indicate an edge-based de-
composition of the graph.

the best joint action that maximizes the total reward.
In many domains, coordination graphs change dynami-

cally based on the state. The approaches based on coordi-
nation graphs are adapted to dynamic state-based coordina-
tion [6, 7]. For example, in the approach of [7], a set of rules
dictate which agent should coordinate with whom, and the
value of a state is based on the current coordination graph.
We adopt their Max-Plus algorithm to solve coordination
problems at the task execution level in this paper.

The main advantage of assignment-based decomposition is
that problem complexity is divided between the assignment
level and the task execution level. Complexity is reduced
at the assignment level by ignoring the interactions between
agents working on different tasks. Complexity is reduced at
the task execution level by solving each task independently
of others except for a limited set of interactions defined by
coordination rules, e.g., to avoid collisions.

The combination of assignment-based decomposition and
coordinated reinforcement learning has some advantages over
using either one alone. First, consideration of local interac-
tions such as collision avoidance can be delegated the task
execution level, freeing the top level to focus on assignment
decisions. Second, the coordination graph at the task exe-
cution level can take advantage of knowing the assignment
when making coordination decisions. Third, since the lower
level value functions are used in making the higher level
assignment decisions, collision information is indirectly per-
colated to the assignment level.

We make three contributions in this paper. First, we de-
scribe an assignment-based decomposition approach to solve
cooperative multiagent MDPs. Second, we show how to
combine coordination graphs with a search-based assign-
ment to achieve an integrated system that optimizes as-
signments and exhibits dynamic coordination. Third, we
demonstrate empirical results in two domains that show that
our approach scales better than existing approaches to mul-
tiagent coordination. We show this approach also allows
transferring value functions directly from a domain with few
agents to one with many.

2. MULTIAGENT ASSIGNMENT MARKOV

DECISION PROCESSES
In this section, we first introduce Markov Decision Pro-

cesses (MDPs), then generalize them to multiagent settings.
An MDP is a tuple 〈S, A, P, R〉 where S is a finite set of
states, A is a finite set of actions, P is a Markovian transi-

tion model that describes the probability P (s′|s, a) of end-
ing up in state s′ when performing action a in state s, and
R : S ×A → R is a reward function that returns the reward
R(s, a) obtained after taking action a in state s. An agent’s
policy is defined as a mapping π : S → A. The objective
is to find an optimal policy π∗ that maximizes the expected
discounted future reward for each state s. We assume that
the MDP has an infinite horizon, and that future rewards are
discounted exponentially with a discount factor γ ∈ [0, 1).

The optimal action-value function or Q-function gives the
expected discounted future reward for any state s when ex-
ecuting action a and then following the optimal policy. The
Q-function satisfies the following recurrence relation:

Q∗(s, a) = R(s, a) + γ
X
s′

P (s′|s, a)max
a′ Q∗(s′, a′) (1)

The optimal policy for a state s is the action arg maxa Q∗(s, a)
that maximizes the expected future discounted reward.

A Multiagent Assignment MDP extends the above frame-
work to a set of n agents G = {g} (|G| = n). Each agent g
has its own set of local state Sg and actions Ag. We also de-
fine a set of tasks T = {t}, each associated with a set of state
variables St that describe the task. The set of tasks (and cor-
responding state variables required to describe them) may
vary between states. The joint action space is the Cartesian
product of the actions of all n agents: A = A1×A2×...×An.
The joint state space is the Cartesian product of the states of
all agents and all tasks. The reward is decomposed between
all n agents, i.e., R(s, a) =

Pn
i Ri(s,a), where Ri(s,a) is

the agent-specific reward for state s and action a.
β : T → Gk is an assignment of tasks to agents; here

k indicates an upper bound on the number of agents that
may be assigned to a particular task. β(t) indicates the set
of agents assigned to task t. We let sβ(t) denote the joint
states of all agents assigned to t, and aβ(t) denote the joint
actions of all agents assigned to task t. The total utility
Q(s,a) depends on the states of all tasks and agents s and
actions of all agents a.

3. MULTIAGENT Q-LEARNING WITH

COORDINATION GRAPHS
In this section, we examine the potential of using an ex-

isting technique to solve multiagent assignment MDPs. In
a multiagent approach, the global Q-function Q(s,a) is ap-
proximated as a sum of agent-specific action-value functions:
Q(s,a) =

Pn
i Qi(si, ai) [8]. Further we approximate each

agent-specific action-value as a function only of the agent’s
state si. A “selfish” agent-based version of multiagent Q-
learning [13] updates each agent’s Q-value independently
using the update function:

Qi(si, ai) ← Qi(si, ai)+

α
h
Ri(s,a) + γQi(s

′
i, a

∗
i ) − Qi(si, ai)

i (2)

where α ∈ [0, 1] is the learning rate. The notation Qi indi-
cates only that the Q-value is agent-based. The parameters
used to store the Q-function may either be unique to that
agent or shared between all agents.

In most cases, each agent independently pursuing a pol-
icy to optimize its own Qi will not optimize the total utility,
since each agent’s actions impact the state and the utility of
others. Hence, collaborative agents need to coordinate. A
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Initialize Q(s,a) optimistically
Initialize s to any starting state
for each step do

Assign tasks T to agents M by finding arg maxβ

P
t vβ(t),t, where vg,t = max

a∈Ag

Q(st, sg, a)

For each task t, choose actions aβ(t) from sβ(t) using ε-greedy policy derived from Q
Take action a, observe rewards r and next state s′

For each task t, Q(st, sβ(t), aβ(t)) ← Q(st, sβ(t), aβ(t))+ α
h
rβ(t) + γ max

a′∈A′
β(t)

Q(s′t, s
′
β(t), a

′) − Q(st, sβ(t), aβ(t))
i

s ← s′

end for

Figure 2: The assignment-based decompostion Q-learning algorithm.

coordination graph (see Figure 1) allows the agents to spec-
ify and model coordination requirements [4]. The presence
of an edge in a coordination graph indicates that two agents
should coordinate their action selection, for example, so as
to avoid collisions. A coordination graph may be specified
as part of the domain, or if the graph is context specific [6], a
combination of rules provided with the domain. This set of
rules determines whether an edge between any two vertices
of the graph should exist, given the state.

As in [8] we use an edge-based decomposition of a context-
specific coordination graph. The global Q-function for such
a decomposition is approximated by a sum over all local
Q-functions, each defined over an edge (i, j) of the graph:

Q(s,a) =
X

(i,j)∈E

Qij(sij , ai, aj) (3)

where sij ⊆ si∪sj is the subset of state variables relevant to
agents i and j, and (i, j) ∈ E describes a pair of neighboring
nodes (i.e., agents). The optimal action for a coordination
graph is given by arg maxa Q(s,a). As with the agent-based
Q-function, the notation Qij indicates only that the Q-value
is edge-based, and parameters may or may not be shared
between edges.

Coordination graphs are a powerful method of coordinat-
ing multiple agents, but they are ill-fitted for solving multi-
agent assignment problems with arbitrary coordination con-
straints. We show a simple proof of this below. For simplic-
ity we equate tasks and actions and assume that each action
is relevant to a single task a or b:

Proposition 3.1. Arbitrary reward functions from the
joint action space A1 × . . . × An to {0, 1} are not express-
ible using an edge-based decomposition over a coordination
graph.

Proof: Let A1 = . . . = An = {a, b}, hence there are
2n joint actions. Each joint action may be mapped to 0
or 1, leading to 22n

possible functions. To represent these
functions, we need at least 2n bits. A coordination graph
over n agents has at most O(n2) edges. Each edge has at
most 4 constraints, one for each possible action pair. Thus,
we have room for specifying only O(n2) values, which are

not sufficient to represent 22n

possible functions. �

4. ASSIGNMENT-BASED

DECOMPOSITION OF MAMDPS
Because coordination graphs cannot capture some of the

coordination requirements that are needed in an MAMDP,

we propose an alternate solution. Rather than using coor-
dination graphs to make assignment decisions, we split the
action selection step of the Q-learning algorithm into two
levels: the upper assignment level, and the lower task exe-
cution level. At the assignment level, agents are assigned to
tasks. Once the assignment decision is made, the lower level
action that each agent should take to complete its assigned
task is decided by Q-learning in a smaller state space. This
two-level decision making process occurs each time-step of
the reinforcement learning algorithm, taking advantage of
the opportunistic reassignments.

At the assignment level, we ignore interactions between
the agents assigned to different tasks. This action decompo-
sition exponentially reduces the number of possible actions
that need to be considered at the lowest level, at a cost of
increasing the number of possible assignments that must be
considered. Because each agent g need only consider its lo-
cal state sg and task-specific state st to come to a decision,
this method can greatly reduce the number of parameters
that are necessary to store. This reduction is possible be-
cause rather than storing separate value functions for each
possible agent and task combination, we can share a single
value function between multiple agent-task assignments.

We use Q(st, sβ(t), aβ(t)) to denote the discounted total
reward for a task t and set of agents β(t) starting from a task
state st, the joint state sβ(t) and joint actions aβ(t)) of the
agents in the team. We learn the Q-function for an assigned
subset of agents using standard Q-learning approaches:

Q(st, sβ(t), aβ(t)) ← Q(st, sβ(t), aβ(t)) + α
h
rβ(t)+

γ max
a′∈A′

β(t)

Q(s′t, s
′
β(t), a

′) − Q(st, sβ(t), aβ(t))
i (4)

The assignment problem described is nontrivial – there
are an exponential number of possible assignments in the
number of agents. However, there is an opportunity to ap-
ply various search techniques to solve this problem, and we
discuss several of these here.

Exhaustive search: One solution is to perform an ex-
haustive search over all possible assignments of agents to
tasks. Each such assignment is given a weight, which is
derived from the underlying value function, given by Equa-
tion 4. The value vg,t of a task t and set of agents g is thus
the maximum value of all possible actions of those agents:

vg,t = max
a∈Ag

Q(st, sg,a) (5)

We then exhaustively search for the mapping β that returns
the maximum total value for all tasks maxβ

P
t vβ(t),t. This

method has the advantage that it is guaranteed to select the
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optimum assignment. However, for many agents, this search
could become intractable. A faster approximate search tech-
nique might be necessary, and so we also considered two
simple approximate search techniques.

Sequential greedy assignment: This search uses a sim-
ple method of greedily assigning agents to high-value tasks:
for each task t we consider all sets of agents that might be
assigned, and choose the set g that provides the maximum
value vg,t. We remove agents g from future consideration,
and repeat until all tasks or agents have been assigned.

Swap-based hill climbing: This method uses the as-
signment at the previous step (or a random assignment for
the first time this search occurs) as the starting point of a
hill climbing search of the assignment space. At each step of
the search, we consider all possible next states obtained by
swapping a set of agents from one task with another set of
the same size assigned to a different task. We then commit
to the swap resulting in the most improvement, repeating
until convergence.

5. ADVANTAGES OF ASSIGNMENT-

BASED DECOMPOSITION
We analyze the time complexity of assignment-based de-

composition as follows. The time required to perform an
exhaustive search of the assignment space is the sum of the
time required to pre-calculate vg,t values and the time re-
quired to perform the actual search. The time required to
calculate a single vg,t value is O(|A|k), where |A| is the num-
ber of actions a single agent may take, and k is an upper
bound on the number of agents that may be assigned to a
task. Therefore, the time required to pre-calculate all val-
ues of vg,t is O(|A|k|T |Cn

k ) where C is the choice function,
|T | is the number of tasks, and n is the number of agents.

An exhaustive search requires O(n!/(k!)n/k) time, which is
proportional to the number of ways to assign k agents each
to n/k tasks. This is significantly reduced by both the se-
quential greedy search and swap-based hill climbing.

The advantage of assignment-based decomposition is much
more apparent when we consider the space complexity of the
value function. A value function over the entire state-action
space would require O(S

|T |
t Sn

a |A|n) parameters, where St

and Sa are the sizes of the state required to store local pa-
rameters for each task and agent respectively. Assignment-
based decomposition uses considerably fewer parameters to
store the task-based value function Q(st, sg,a). Instead, we
need space of only O(StS

k
a |A|k) parameters for each task.

A further advantage of the additive decomposition of the
task execution level in Equation 3 is that each Qi,j function
may share the same parameters. Generalizing, or transfer-
ring, that single shared value function to additional tasks
and/or agents can be quite simple. In many cases, no ad-
ditional learning is necessary. The same value function can
often be used, for example, in domains with twice as many
tasks and agents as the original domain. Only the size of
the search space at the assignment level needs to grow.

6. COORDINATION GRAPHS AND

MAMDPS
Assignment-based decomposition is sufficient coordination

if the problem is completely decomposed after assignments
have been made; however this is often not the case. The

possibility remains of interference between agents assigned
to different tasks. To handle such interactions, we define a
coordination graph over agents acting on the task execution
level. An edge should be placed between two agents when
the actions of those agents might interfere, such as when a
collision is possible or the two agents might need to share
a common resource. Such coordination must be context-
specific since agents are constantly changing states. Thus,
it is necessary to combine the assignment decisions with
context-specific coordination at the task execution level. To
that end, we adapt some methods described in [7] and [8].

6.1 The Max-plus Algorithm
If we are to place multiple agents in a coordination graph,

we must use an action selection algorithm that can take ad-
vantage of this structure. We wish to maximize the global
payoff maxa Q(s,a), (where Q(s,a) is given by Equation
3). Initial work in coordination graphs suggested a vari-
able elimination (VE) technique [5] to solve this problem,
however work in [8] shows that VE techniques can be slow
to solve large coordination graphs, require a lot of memory,
and in addition can be quite complex to implement. Instead,
[8] proposed the use of the Max-plus algorithm.

The Max-plus algorithm is a message-passing algorithm
based on belief propagation for Bayesian networks [11, 15,
14]. Agents in Max-plus instead pass (normalized) values
indicating the locally optimal payoff of each agent’s actions
along edges of the coordination graph. Max-plus finds the
global payoff by having each agent i repeatedly sending mes-
sages μij to its neighbors:

μ′
ij = max

ai

n
Qij(sij , ai, aj) +

X
k∈Γ(i)\j

μki(ai)
o
− cij (6)

where μki is the incoming message, and μ′
ij is the outgoing

message. All messages are in fact vectors over possible ac-
tions. Γ(i)\j represents all neighbors of i except j and cij is
a normalization factor, calculated after the initial values μ′

ij

have been found. Max-plus sets this to be the average over
all values of the outgoing message: cij = 1

|Aj |
P

aj
μ′

ij(aj).

This prevents messages from exploding in value as mul-
tiple iterations of the algorithm proceed. Once messages
have converged or a time limit has been reached, each agent
chooses the action that maximizes arg maxai{Qij(sij , ai, aj)+P

j∈Γ(i) μji(ai)} for that agent.

6.2 Dynamic Coordination
Although we use an edge-based decomposition (as in Sec-

tion 2), it is often the case that rewards are received on
a per-agent basis instead of a per-edge basis. Thus, we
must compute local Qi functions for each agent in the graph.
Following [8] we do this by assuming each Qij contributes
equally to each agent i and j of its edge:

Qi(si, ai) =
1

2

X
j∈Γ(i)

Qij(sij , ai, aj) (7)

where Γ(i) indicates the neighbors of agent i. The sum of all
such Qi functions equals Q in Equation 3. We assume each
agent has at least one other neighbor in the coordination
graph, i.e., the graph is connected. It is fairly straightfor-
ward to adapt these methods in cases where an agent does
not need to coordinate with anyone.
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Initialize Q(s,a) optimistically
Initialize s to any starting state
for each step do

Assign tasks T to agents M by finding arg maxβ

P
t vβ(t),t, where vg,t = max

a∈Ag

P
i,j∈g

Qij(sij , ai, aj)

Choose a from s using max-plus algorithm and ε-greedy policy derived from Q
Take action a, observe rewards r and next state s′

Use rules given with domain to create coordination graph G = (V, E) for state s′

Determine agent Q-functions Qi(si, ai) and Qi(s
′
i, a

∗
i ) for each agent i using Qi(si, ai) = 1

2

P
j∈Γ(i)

Qij(sij , ai, aj)

For each edge (i, j) of the coordination graph, update its Q-value using

Qij(sij , ai, aj) ← Qij(sij , ai, aj) + α
P

k∈{i,j}

Rk(s,a)+γQk(s′k,a∗
k)−Qk(sk,ak)

|Γ(k)|

s ← s′

end for

Figure 3: The assignment-based decompostion Q-learning algorithm using coordination graphs.

Because our coordination graph is context-specific, to up-
date the Q-function we must use an agent-based update.
This is because the presence or absence of edges changes
from state to state, so we cannot be assured that an edge
that is present in the current time step was available in the
last time step. To obtain the agent-based update equation
for an edge-based decomposition, the agent-based update
(Equation 2) is rewritten using Equation 7 to get:

Qij(sij , ai, aj) ← Qij(sij , ai, aj)+

α
X

k∈{i,j}

Rk(s,a) + γQk(s′k, a∗
k) − Qk(sk, ak)

|Γ(k)|
(8)

This update equation propagates the temporal-difference er-
ror from all edges including agents i and j to the local Q-
function of each edge (i, j). This update is context-specific
because it does not require the same edges to be present at
each time step of the Q-learning algorithm; only that local
Qk functions can be computed for each vertex of the coordi-
nation graph, which is done using Equation 7. The notation
Qi and Qij indicates that the Q-values are agent-based or
edge-based respectively. Q-function parameters are shared
between agents and edges. The final Q-learning algorithm
may be seen in Figure 3.

A complication arises during the assignment search step
of Figure 2 when using coordination graphs. It is not pos-
sible to efficiently calculate the value of an assignment vg,t

while still taking into account the contribution of edge-based
Q-values Qij that occur between groups of agents assigned
to different tasks. Hence, we approximate vg,t by only tak-
ing into account the local state and actions of its assigned
agents, the state variables st, and ignoring inter-group edges
of the graph. At the task execution level, we consider all
interactions, but since the task assignment is fixed, the pos-
sible interactions are again limited.

7. EXPERIMENTAL RESULTS
We conducted experiments in two MAMDP domains: a

simple product delivery and vehicle routing domain, and a
cooperative multiagent predator-prey domain based on [7].
Our product delivery domain does not require coordination
on the task execution level. It is a simple enough domain
that flat and multiagent Q-learning results can be obtained
(albeit requiring function approximation) for comparison to
our approach using a two-level decomposition.

The multiagent predator-prey domain is a more complex
domain. Standard Q-learning approaches do not work here.
We also tested the use of coordination graphs, and several
different assignment search techniques.

7.1 The Product Delivery Domain
The first domain we experimented with is a simple product

delivery domain previously described in [12], shown in Fig-
ure 6. We assume a supplier of a single product that needs
to be delivered to several shops from a warehouse using sev-
eral trucks. The goal is to ensure that the stores remain
supplied while minimizing truck movements. It takes one
unit of time to go from any location to its adjacent location
or to execute an unload action.

The shop inventory levels and truck load levels are dis-
cretized into 5 levels 0-4. States are factored, and state
features include information about truck position, load, and
shop inventories. Each truck has 9 actions available at each
time step: unload 1, 2, 3, or 4 units, move in one of up
to four directions, or wait. Trucks are loaded automatically
upon reaching the depot. A small negative reward of −0.1 is
given for truck move actions to reflect transportation costs.

Customer consumption is modeled at each shop by de-
creasing the inventory level by 1 unit with some probability,
which independently varies from shop to shop. There is a
penalty of −5 for stockouts, i.e., if a customer enters a store
and finds the shelves empty. Thus, filling each store becomes
a task for any of the multiple agents (trucks) to complete.

Our experiments involved four agents delivering goods to
five shops. An assignment is therefore a mapping from shops
to the trucks that will serve them. Each shop is assigned one
truck, which may only unload at that shop. Thus, agents’
actions cannot interfere with each other, and there is no
need for coordination on the task execution level. Because
not all shops can be delivered to, we add a “phantom truck”
for the unassigned shop. This “agent” has no associated
state features. Its existence allows the assignment step of
the assignment-based decomposition to determine the ap-
propriate penalty for not assigning a truck to any shop.

We conducted several experiments in this domain (see Fig-
ure 4). All results were averaged over 30 runs of 106 steps
each. We tuned the learning rate α separately for each test,
setting α = 0.1 for the assignment-based decomposition test
and α = 0.01 for all others. We set the discount rate γ = .9,
and used ε-greedy exploration with ε = .1. Average reward
was measured for 2,000 out of every 50,000 steps.
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Figure 4: Comparison of various Q-learning ap-
proaches for the product delivery domain.

Our assignment-based decomposition approach used an
exhaustive search of possible assignments and no function
approximation, so we required 11,250 parameters to store
the value function Q(st, sβ(t), aβ(t)) (5 shops, 5 shop inven-
tory levels, 10 truck locations, 5 truck loads, and 9 possible
actions per truck). Here st indicates state features about the
assigned shop and its inventory, and sβ(t) indicates features
for truck position and load.

The joint and multiagent Q-learning approaches we used
need too many parameters to keep the value function in a
complete table. Thus, we used tabular linear function ap-
proximation [12], which sums over a set of terms, each de-
rived from a table. Our multiagent Q-learning approaches
sum over one term for each shop to obtain the value func-
tion. Each agent uses its own value function, so we used
four times as many parameters as the assignment-based de-
composition. Joint agent Q-learning sums over four times as
many terms, additionally indexing with each truck, but re-
quired no additional parameters. Our handcoded approach
worked similarly to the assignment based decomposition: for
each truck-shop pair, a distance weight was calculated from
the state features, then the assignment was made based on
an exhaustive search over possible assignments, taking the
assignment giving minimum total distance.

We tried two coordination methods for multiagent
Q-learning: when selecting actions, we either exhaustively
searched over all joint actions, or used a simple form of multi-
agent coordination called serial coordination, which greedily
selects actions for agents one at a time, allowing each agent
to know the actions selected by previous agents.

Assignment-based decomposition outperformed all other
approaches, although our handcoded algorithm comes close.
The multiagent Q-learning approaches performed the worst

Table 1: Running times (in seconds), parameters
required, and and terms summed over for five algo-
rithms applied to the product delivery domain.

Algorithm Time Space Terms

Joint agent Q-learning 142 45,000 20
Multiagent Q, exhaustive search 160 45,000 5
Multiagent Q, serial coordination 3 45,000 5
Assignment-based decomposition Q 3 11,250 1
Handcoded algorithm 3 N/A N/A

Figure 5: Examination of the optimality of policy
found by assignment-based decomposition for prod-
uct delivery domain.

of these methods. In CPU time, both multiagent Q-learning
with serial coordination and assignment-based decomposi-
tion approaches were much faster than those approaches us-
ing an exhaustive search of the action space (Table 1).

We also examined the optimality of the policy found by
assignment-based decomposition in the product delivery do-
main (Figure 5). The top line is an optimistic estimate of
the optimal policy in this domain. We calculated this by
multiplying the average number of customer visits per time
step (1) by the transportation cost required to satisfy a sin-
gle customer visit (−.1) to get the average transportation
cost/time step required to satisfy all customers (−.1). This
estimate is very optimistic because it ignores stockout costs,
which are inevitable due to the stochastic nature of cus-
tomer visits. Still, the average reward of the policy found
by assignment-based decomposition is quite close to that of
our estimate. We can take this analysis one step further:
our estimate ignores stockout costs, we can similarly ignore
the contribution of stockout events to the average reward of
the policy found by assignment-based decomposition. The
result is a graph of only the transportation costs incurred

Figure 6: The product
delivery domain, with
depot (square) and five
shops (circles). Num-
bers indicate probability
of customer visit each
time step.

Figure 7: A possible
state in an 8 vs. 4
toroidal grid predator-
prey domain. All eight
predators (black) are in
a position to possibly
capture all four prey
(white).
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Figure 8: Comparison of action selection and search
methods for the 4 vs 2 Predator-Prey domain.

by this policy, seen in Figure 5. From this we conclude that
the policy found by assignment-based decomposition is very
close to optimal if not the optimal in this domain.

7.2 Multiagent Predator-Prey Domain
The second domain we experimented in is a cooperative

multiagent predator-prey domain based on work by [7]. That
original domain required two agents (predators) to cooper-
ate in order to capture a single prey. Agents move over a
10x10 toroidal grid world, and may move in four directions
or stay in place. Prey move randomly to any empty square.
Predators and prey move simultaneously, so predators must
guess where the prey will be in the next time step. If preda-
tors collide, or if a predator enters the same space as the prey
without an adjacent predator, the responsible predators are
penalized and moved to a random empty square. The prey
is captured (with a reward of 75) when one predator enters
its square, and another predator is adjacent.

This domain exhibits two key differences to that of [7]:
first, we increase the numbers of predators and prey from
2 vs. 1 to 4 vs. 2 or 8 vs. 4 (see Figure 7). Second, each
time a prey is captured, it is randomly relocated somewhere
else on the board and the simulation continues. Thus, our
domain has an infinite horizon rather than being episodic.

There are several consequences of the increase in scale of
our domain. Of course, the joint action and state spaces
increase exponentially. More interesting is a need for preda-
tors to be assigned to prey such that exactly two predators
are assigned to capture each, if the best average reward is to
be found. Thus, this domain is an example of an MAMDP.

Once predators are assigned to prey, it is useful to coordi-
nate the actions of predators on the task execution level to
prevent collisions. Thus we introduce coordination graphs
on the task execution level as described in Section 6. The
existence of a top-level assignment provides several advan-
tages, such as when defining the rules determining when
agents should cooperate. We change only one of the coordi-
nation rules introduced in [7]. Predators should coordinate
when either of two conditions hold:

• the Manhattan distance between them is less than or
equal to two cells.

• both predators are assigned to the same prey.

Figure 9: Comparison of action selection and search
methods for the 8 vs 4 Predator-Prey domain.

The existence of predator assignments allows us to both cre-
ate improved coordination rules on the task execution level,
and reduces the number of state variables (i.e., prey) we are
required to account for in the edge value function. The Q-
value of each edge between predators cooperating to capture
a prey need only be based on the positions of those predators
relative to their assigned prey. The Q-values of each edge
between predators cooperating only for collision avoidance
need only be based on the positions of those two predators.
The existence of these two kinds of edges does increase the
number of parameters required to learn the value function,
but far less than the exponential increase in parameters re-
quired to store a value function over two predators and two
or more prey (without function approximation).

We conducted several experiments in the multiagent
predator-prey domain (Figures 8 and 9). In these tests, we
show results over 107 steps of our algorithms (Figures 2 and 3).
Figure 8 shows the results for 4 predators vs. 2 prey, and
Figure 9 shows the results for 8 predators vs. 4 prey. We
compared the same set of search and coordination strategies
in both domains. We set the learning rate α = 0.1, discount
rate γ = .9, and exploration rate ε = .2. Average reward
of the domain was measured for 2,000 steps out of every
500,000 steps. During test phases, ε was set to 0. Because
the maximum reward receivable by two agents is 75, edge
value functions were optimistically initialized to this value.
We averaged over 30 runs to obtain the results for this paper.

We conducted six identical experiments for each domain:
Max-plus action selection without an assignment-based de-
composition (using sparse cooperative Q-learning as in [7]),
assignment-based decomposition without using coordination
graphs and using an exhaustive search of assignments (as in
Figure 2), and assignment-based decomposition with max-
plus action selection and four assignment methods: exhaus-
tive search, sequential greedy assignment, swap-based hill
climbing, and a fixed assignment (as in Figure 3). For the
fixed assignment, we arbitrarily assigned pairs of predators
to prey at the start of the run, then never reassigned them.

As may be seen from these results, Max-plus search alone
performed poorly compared to the other techniques. This
is because a coordination graph alone is unable to capture
the coordination requirements of the predator-prey domain
(see Proposition 3.1). Using assignment search alone results
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in a large increase in performance; this kind of search does
capture some essential coordination requirements. However,
this alone is also not enough: it is still possible for agents
to interfere (collide) with each other after assignments have
been made. This type of coordination is ideal for a coor-
dination graph approach to solve as described in Section 6,
as may be seen by the experiments combining assignment
search with max-plus action search.

Of the various task assignment methods, fixed assign-
ment and sequential greedy assignment did not perform well.
Swap-based hill climbing performed almost identically to ex-
haustive search. This gives us hope that similar approximate
search techniques can allow assignment-based decomposi-
tion to scale to a large number of agents.

We also experimented with transfer learning (Figure 9).
Instead of initializing Q-values optimistically, we transferred
parameters learned from the 4 vs. 2 to the 8 vs. 4 predator-
prey domain. This is possible because both domains have
the same number of parameters; as would any number of
agents because the Q-functions are all based on 2 preda-
tors and 1 prey. We tested the resulting policy by turn-
ing off learning and using assignment-based decomposition
with exhaustive assignment search and max-plus coordina-
tion. These results demonstrate that, thanks to assignment-
based decomposition, a policy learned with few agents can
scale successfully to many more agents.

8. DISCUSSION
We introduced Multiagent Assignment MDPs and gave

a two-level decomposition method that is effective for this
class of MDPs. This class of MDPs can capture many real-
world domains such as vehicle routing and delivery, board
and real-time strategy games, disaster response, fire fighting
in a city, etc., where multiple agents and tasks are involved.
We gave empirical results in two domains that demonstrate
that the combination of assignment search at the top level
and coordinated reinforcement learning at the task execu-
tion level is well-suited to solving such domains while either
method alone is not sufficiently powerful.

Because a search over an exponential number of assign-
ments is not scalable as the number of agents increases, we
have also shown how several simple approximate search tech-
niques perform effective assignment search. These results
encourage the conclusion that assignment search is a practi-
cal approach for large cooperative multiagent domains. Fu-
ture work includes scaling the approaches in this paper to
work with much larger number of agents, tasks, and state
variables and considering other kinds of interactions such as
global resource constraints.

Future work in assignment-based decomposition could ad-
dress adapting it to a decentralized domain. The Max-
plus algorithm already can be decentralized [8], however
assignment-based decomposition assumes a centralized con-
troller. Adapting our algorithms to work in a DEC-MDP
context could involve similar message-passing techniques to
those used by the max-plus algorithm.
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